Text Practice Mode
A python script
created Dec 9th 2020, 21:29 by Hanibach
2
93 words
67 completed
0
Rating visible after 3 or more votes
saving score / loading statistics ...
00:00
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
from scipy.optimize import minimize
x = np.linspace(0.0, 1.0, 30)
np.random.seed(42)
p = 1.4
a = 0.9
epsilon = 0.3
data = a * x**p + epsilon * (np.random.rand(x.size) - 0.5)
def prediction(args):
A = args[0]
P = args[1]
return A * x**P
def objective_function(args):
rms_error = np.trapz((prediction(args) - data)**2) / (max(x) - min(x))
return rms_error
a_guess = 1.0
p_guess = 1.0
solution = minimize(objective_function, [a_guess, p_guess])
print(solution['x'])
fig, ax = plt.subplots(figsize=(8,4))
ax.plot(x, data, 'o')
ax.plot(x, prediction(solution['x']))
plt.tight_layout()
plt.grid()
plt.show()
import matplotlib as mpl
from matplotlib import pyplot as plt
from scipy.optimize import minimize
x = np.linspace(0.0, 1.0, 30)
np.random.seed(42)
p = 1.4
a = 0.9
epsilon = 0.3
data = a * x**p + epsilon * (np.random.rand(x.size) - 0.5)
def prediction(args):
A = args[0]
P = args[1]
return A * x**P
def objective_function(args):
rms_error = np.trapz((prediction(args) - data)**2) / (max(x) - min(x))
return rms_error
a_guess = 1.0
p_guess = 1.0
solution = minimize(objective_function, [a_guess, p_guess])
print(solution['x'])
fig, ax = plt.subplots(figsize=(8,4))
ax.plot(x, data, 'o')
ax.plot(x, prediction(solution['x']))
plt.tight_layout()
plt.grid()
plt.show()
