Text Practice Mode
neuroscience for dummies pdf
created Oct 20th 2016, 00:58 by nothinghere
1
1059 words
4 completed
0
Rating visible after 3 or more votes
saving score / loading statistics ...
00:00
The nervous system consists of the brain, spinal cord and
peripheral nerves. It is made up of nerve cells, called
neurons, and supporting cells called glial cells.
There are three main kinds of neurons. Sensory neurons are
coupled to receptors specialised to detect and
respond to different attributes of the internal and external
environment. The receptors sensitive to changes in light,
sound, mechanical and chemical stimuli subserve the sensory
modalities of vision, hearing, touch, smell and taste.
When mechanical, thermal or chemical stimuli to the skin
exceed a certain intensity, they can cause tissue damage
and a special set of receptors called nociceptors are
activated; these give rise both to protective reflexes and to
the sensation of pain (see chapter 5 on Touch and Pain).
Motor neurons, which control the activity of muscles, are
responsible for all forms of behaviour including speech.
Interposed between sensory and motor neurons are
Interneurones. These are by far the most numerous (in the
human brain). Interneurons mediate simple reflexes as well
as being responsible for the highest functions of
the brain. Glial cells, long thought to have a purely
supporting function to the neurons, are now known to make
an important contribution to the development of the
nervous system and to its function in the adult brain.
While much more numerous, they do not transmit
information in the way that neurons do.
Neurons have an architecture that consists of a cell body
and two sets of additional compartments called
‘processes’. One of these sets are called axons; their job is
to transmit information from the neuron on to others to
which it is connected. The other set are called dendrites -
their job is to receive the information being transmitted by
the axons of other neurons. Both of these processes
participate in the specialised contacts called synapses
(see the Chapters 2&3 on Action Potential and Chemical
Messengers). Neurons are organised into complex chains
and networks that are the pathways through which
information in the nervous system is transmitted.
The brain and spinal cord are connected to sensory
receptors and muscles through long axons that
make up the peripheral nerves. The spinal cord has two
functions: it is the seat of simple reflexes such as the knee
jerk and the rapid withdrawal of a limb from a hot object or a
pinprick, as well as more complex reflexes, and it forms a
highway between the body and the brain for information
travelling in both directions.
These basic structures of the nervous system are the same
in all vertebrates. What distinguishes the human brain is its
large size in relation to body size. This is due to an enormous
increase in the number of interneurons over the course of
evolution, providing humans with an immeasurably wide choice
of reactions to the environment.
Anatomy of the Brain
The brain consists of the brain stem and the cerebral
hemispheres.
The brain stem is divided into hind-brain, mid-brain and a
‘between-brain’ called the diencephalon. The hind-brain is an
extension of the spinal cord. It contains networks of
neurons that constitute centres for the control of vital
functions such as breathing and blood pressure. Within
these are networks of neurons whose activity controls these
functions. Arising from the roof of the hind-brain is the
cerebellum, which plays an absolutely central role in the
control and timing of movements (See Chapters on
Movement and Dyslexia).
The midbrain contains groups of neurons, each of which seem
to use predominantly a particular type of chemical
messenger, but all of which project up to cerebral
hemispheres. It is thought that these can modulate the
activity of neurons in the higher centres of the brain to mediate such functions as sleep, attention or reward.
The diencephalon is divided into two very different areas
called the thalamus and the hypothalamus: The thalamus
relays impulses from all sensory systems to the cerebral
cortex, which in turn sends messages back to the thalamus.
This back-and-forward aspect of connectivity in the brain is
intriguing - information doesn’t just travel one way.
The hypothalamus controls functions such as eating and
drinking, and it also regulates the release of hormones
involved in sexual functions.
The cerebral hemispheres consist of a core, the basal
ganglia, and an extensive but thin surrounding sheet of
neurons making up the grey matter of the cerebral cortex.
The basal ganglia play a central role in the initiation and
control of movement. (See Chapter 7 on Movement).
Packed into the limited space of the skull, the cerebral cortex
is thrown into folds that weave in and out to enable a much
larger surface area for the sheet of neurons than would
otherwise be possible. This cortical tissue is the most highly
developed area of the brain in humans - four times bigger
than in gorillas. It is divided into a large number of discrete
areas, each distinguishable in terms of its layers and
connections. The functions of many of these areas are
known - such as the visual, auditory, and olfactory areas, the
sensory areas receiving from the skin (called the
somaesthetic areas) and various motor areas.
The pathways from the sensory receptors to the cortex and
from cortex to the muscles cross over from one side to the
other. Thus movements of the right side of the body are
controlled by the left side of the cortex (and vice versa).
Similarly, the left half of the body sends sensory signals to
the right hemisphere such that, for example, sounds in the
left ear mainly reach the right cortex. However, the two
halves of the brain do not work in isolation - for the left and
right cerebral cortex are connected by a large fibre tract
called the corpus callosum.
The cerebral cortex is required for voluntary actions,
language, speech and higher functions such as thinking and
remembering. Many of these functions are carried out by
both sides of the brain, but some are largely lateralised to
one cerebral hemisphere or the other. Areas concerned with
some of these higher functions, such as speech (which is
lateralised in the left hemisphere in most people), have been
identified. However there is much still to be learned,
particularly about such fascinating issues as consciousness,
and so the study of the functions of the cerebral cortex is
one of the most exciting and active areas of research
in Neuroscience.
peripheral nerves. It is made up of nerve cells, called
neurons, and supporting cells called glial cells.
There are three main kinds of neurons. Sensory neurons are
coupled to receptors specialised to detect and
respond to different attributes of the internal and external
environment. The receptors sensitive to changes in light,
sound, mechanical and chemical stimuli subserve the sensory
modalities of vision, hearing, touch, smell and taste.
When mechanical, thermal or chemical stimuli to the skin
exceed a certain intensity, they can cause tissue damage
and a special set of receptors called nociceptors are
activated; these give rise both to protective reflexes and to
the sensation of pain (see chapter 5 on Touch and Pain).
Motor neurons, which control the activity of muscles, are
responsible for all forms of behaviour including speech.
Interposed between sensory and motor neurons are
Interneurones. These are by far the most numerous (in the
human brain). Interneurons mediate simple reflexes as well
as being responsible for the highest functions of
the brain. Glial cells, long thought to have a purely
supporting function to the neurons, are now known to make
an important contribution to the development of the
nervous system and to its function in the adult brain.
While much more numerous, they do not transmit
information in the way that neurons do.
Neurons have an architecture that consists of a cell body
and two sets of additional compartments called
‘processes’. One of these sets are called axons; their job is
to transmit information from the neuron on to others to
which it is connected. The other set are called dendrites -
their job is to receive the information being transmitted by
the axons of other neurons. Both of these processes
participate in the specialised contacts called synapses
(see the Chapters 2&3 on Action Potential and Chemical
Messengers). Neurons are organised into complex chains
and networks that are the pathways through which
information in the nervous system is transmitted.
The brain and spinal cord are connected to sensory
receptors and muscles through long axons that
make up the peripheral nerves. The spinal cord has two
functions: it is the seat of simple reflexes such as the knee
jerk and the rapid withdrawal of a limb from a hot object or a
pinprick, as well as more complex reflexes, and it forms a
highway between the body and the brain for information
travelling in both directions.
These basic structures of the nervous system are the same
in all vertebrates. What distinguishes the human brain is its
large size in relation to body size. This is due to an enormous
increase in the number of interneurons over the course of
evolution, providing humans with an immeasurably wide choice
of reactions to the environment.
Anatomy of the Brain
The brain consists of the brain stem and the cerebral
hemispheres.
The brain stem is divided into hind-brain, mid-brain and a
‘between-brain’ called the diencephalon. The hind-brain is an
extension of the spinal cord. It contains networks of
neurons that constitute centres for the control of vital
functions such as breathing and blood pressure. Within
these are networks of neurons whose activity controls these
functions. Arising from the roof of the hind-brain is the
cerebellum, which plays an absolutely central role in the
control and timing of movements (See Chapters on
Movement and Dyslexia).
The midbrain contains groups of neurons, each of which seem
to use predominantly a particular type of chemical
messenger, but all of which project up to cerebral
hemispheres. It is thought that these can modulate the
activity of neurons in the higher centres of the brain to mediate such functions as sleep, attention or reward.
The diencephalon is divided into two very different areas
called the thalamus and the hypothalamus: The thalamus
relays impulses from all sensory systems to the cerebral
cortex, which in turn sends messages back to the thalamus.
This back-and-forward aspect of connectivity in the brain is
intriguing - information doesn’t just travel one way.
The hypothalamus controls functions such as eating and
drinking, and it also regulates the release of hormones
involved in sexual functions.
The cerebral hemispheres consist of a core, the basal
ganglia, and an extensive but thin surrounding sheet of
neurons making up the grey matter of the cerebral cortex.
The basal ganglia play a central role in the initiation and
control of movement. (See Chapter 7 on Movement).
Packed into the limited space of the skull, the cerebral cortex
is thrown into folds that weave in and out to enable a much
larger surface area for the sheet of neurons than would
otherwise be possible. This cortical tissue is the most highly
developed area of the brain in humans - four times bigger
than in gorillas. It is divided into a large number of discrete
areas, each distinguishable in terms of its layers and
connections. The functions of many of these areas are
known - such as the visual, auditory, and olfactory areas, the
sensory areas receiving from the skin (called the
somaesthetic areas) and various motor areas.
The pathways from the sensory receptors to the cortex and
from cortex to the muscles cross over from one side to the
other. Thus movements of the right side of the body are
controlled by the left side of the cortex (and vice versa).
Similarly, the left half of the body sends sensory signals to
the right hemisphere such that, for example, sounds in the
left ear mainly reach the right cortex. However, the two
halves of the brain do not work in isolation - for the left and
right cerebral cortex are connected by a large fibre tract
called the corpus callosum.
The cerebral cortex is required for voluntary actions,
language, speech and higher functions such as thinking and
remembering. Many of these functions are carried out by
both sides of the brain, but some are largely lateralised to
one cerebral hemisphere or the other. Areas concerned with
some of these higher functions, such as speech (which is
lateralised in the left hemisphere in most people), have been
identified. However there is much still to be learned,
particularly about such fascinating issues as consciousness,
and so the study of the functions of the cerebral cortex is
one of the most exciting and active areas of research
in Neuroscience.
